If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-176=0
a = 2; b = 3; c = -176;
Δ = b2-4ac
Δ = 32-4·2·(-176)
Δ = 1417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1417}}{2*2}=\frac{-3-\sqrt{1417}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1417}}{2*2}=\frac{-3+\sqrt{1417}}{4} $
| 18a-400=886 | | 13=g+5 | | h-6=10 | | 18a=400=886 | | x=151510+(-152812951) | | x(x+2)(2.5)=210 | | 2x^2+2.5x-200=0 | | 15x+10=5x-5 | | 3x/3-3x=-5 | | x=15x-20 | | 30⋅5^n−1=6*5^n | | 3/10(x+30)=100 | | 3/10(x+30)+4x/10=47 | | 14(8x+56)= | | 16x-17=15x+3 | | D. 2x=6 | | (0.00844/0.00518)=(0.2^x)/(0.1^x) | | 3x+2.3=8.9 | | ((3x-1)/4)+((x+3)/6)=3 | | ((3x-1)/4))+((x+3)/6)=3 | | -4+3u=8 | | 35=5y/5 | | 62.5=12.5t | | -7=4v-3 | | 14+y/5=-34 | | (2g-2)+(4g-9)=133 | | 3x-21=90+9x-3=90 | | B(x)=40.75-0.10x | | 3x-21+9x-3=90 | | -5w-18=-2(w-6) | | -9+(-1/3y)+6=-4/3y | | 44-(3c+4)=4(c+6+c |